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THE INWARD BULGE TYPE BUCKLING OF MONOCOQUE CYLINDERS
V - REVISED STRAIN ENERGY THEORY WHICH ASSUMES
A MORE GENERAL DEFLECTED SHAPE AT BUCKLING

By N. J. Hoff, Bertram Klein,
and Bruno A. Boley

SUMMARY

. A strain energy theory 1s developed for the calculation of the crit-

ical load for the inward bulge type of general ingtability of reinforced
monocodque cylinders subJjected to pure bending. The deflected shape at
buckling is assumed to be represented by an expression cantaining eight
free parameters in addition to the two characterizing the. wave lengths in
the circumferential and axial directions. The theory is applied to two
representative cylinders of the GALCIT test serles and to two of the
PIBAL series. The criticel stresses calculated are 8.3 'bo 22.9 percent
higher than the experimental valuss.

INTRODUCTLON

Vhen & reinforced aluminum-alloy monocoque fuselage is subjected to
bending momsnts, such as those caused by the aerodynamic loads acting
upon the tall surfaces, structural failure is likely to occur by the
buckling of the stringers on the compression side of the fuselage. The
half wave length of the deflected shape 1s equal to the spacing of the
ring frames when the frames are comparatively rigid and are spaced far
apart. The criticel stress can be increased by spacing the rings closer,
but at the same time the cross-sectlional dlmensions of the rings must be
made smaller in order to keep the welght of the structure unchanged.
Such a trend can be noticed in the development of the modern monocoque
fuselage from 1930 until the present time. When, however, the distance
between rings and the cross section of the ring decreases beyond a certaln
limit, the rings no longer have sufficlent bending rigldity to act as
rigld supports for the stringers. In such a case failure occurs by general
instebility in which several stringers and rings are involved simlteneaisly.

The general instability of a reinforced thin-walled curved shell was
first investigated by Dschou in 1935 (reference 1) who, at the ggestim
of H. Wagner, worked out and applied to monocoques the buckling 1eory of
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orthotropic shells esteblished in 1932 by Flligge (refersnce 2). A
similar theory was worked out independently by Teylor (reference 3)

in 1935. In these investigations a uniformly distributed compressive
loading was assumed. It was believed that the results would also apply
in the case of bending provided that the wave length in the clrcumfer-
entlial dlrectlon were small enough so that the variation in the Intensity
of the compressive stress caused by the bending moment could be disre-
garded. At the same time the wave length must be greater than the spacing
of the reinforcing elements. Otherwise the structure cannot be considered
as an orthotropic shell. The results of these theorles were compared
later with experiments carried out at GAICIT in 1939 (references 4 to 8).
It was found that the buckling loads predicted were several times as high
as those observed.

Another form of gneral instability, caused by bending, was Investi-
gated by Heck in 1937 (reference 9) whose work is & generalization and
application to reinforced monocoques of an earlier theoretical analysis
of Brazier in 1927 (reference 10). This type of instability consists of
a flattening of the rings and is of no practical importance’in alumlinum-
alloy reinforced monocoque fuselages. '

The problem of general instability due to bending was approached from
another angle by Hoff in 1938 (reference 11). The most highly compressed
stringers were considered as columms elastically supported by the rings,
end the buckling load was calculated by the strain energy method. The
deflected shape was assumed to be mainly an inward bulge symmetric with
respect to the most highly compressed stringer. The stringers were
assumed to be distributed uniformly around the clrcumference but the rings
were treated individuslly. The buckling load was minimized with respect
to two parameters which were the lengths of the wave in the axial and the
clrcumferential directions. Tests carried out with two cylinders showed
that the inward bulge type of general instability was possible and that
1t occurred approximstely at the stress predicted by theory. A non-
dimensional structursl parametexr A was found, the magnitude of which
determined whether fallure would occur by general or panel instability.

The extended experimental investigations underteken at GALCIT begin~
ning in 1938 proved Hoff's theory to be too conservative for practical use.
In GALCIT's theoretical development Von Kermin and Tsien (reference 12)
found that the classical linear theory had to be replaced by & nonlinear
theory in order to predict correctly the buckling loads of ‘nonreinforced
cylinders. Because of the complexlty of the nonlinear theory even in the
cagse of nonreinforced cylinders the idea ‘of finding a theoretical solution
of the buckling problem of reinforced cylinders was given up at GALCIT.

An empirical formla based on dimensional analysis was esteblished which
was In good agreement wlth the results of the GALCIT tests.

In 1943 Hoff .(reference 13) published & new version of his theory. A
review of his earlier work disclosed that there the circumferential wave
length, not expressed explicitly, was always equal to the total circum-
ference of the cylinder after the buckling load was minimized. On the
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other hand, in the tests the inward bulge was restricted to the most
highly compressed regions of the cylinder. In the new publication the
dlscrepancy between experiment and theory wes attributed to the fact that
in the original work the shear strain energy stored in the sheet covering
was neglected. On the other hand, the strain energy of shear was found to
be unduly large when it was assumed that the expressions describing the
distortions of the stringers and rings were valid also for the sheet.
Apparently there are patterns of distortion for the sheet which involve
less strain energy, particularly when the sheet is already in a buckled
state at the moment when gemeral instability occurs.

The difficulties involved in finding the actual distortions of the
sheet covering were circumvented through a semiempirical approach. The
wave-length paremeter n was assumed so as to obtain an agreement between
the buckling load observed in +the GALCIT tests and the predictions of
the theory. In reality the wave length st depend upon the variation of
the shearing rigldity of the panels of sheet arcund the circumference of
the cylinder, and the shearing rigldity 1s certainly influenced by the
compressive and shearing stresses prevalling in the panels. It was con-
cluded, therefore, that n was dependent upon two parameters charac-
texizing the state of the sheet, namely r/d emd Gmr/'b. The connection

between these two paramsters and n was esteblished from an evaluation of
the GAICIT test results, and the correctness of the dsbumptions was sub-
stantiated by the fact that a family of smooth curves was obtained. With
the aid of these curves the buckling load could be predicted in a simple
menner. )

The purely theoretical snalysis was resumed in 1945 by Hoff and Klein
(reference 14) at PIBAL. It was found that the shear strain energy stored
in the sheet covering was not unreasonsbly large when it was calculated o
the basls of an average shear angle defined by the relative displacements
of the four corners of each panel. Such a treatment disregards details of
the states of stress and strain in the panel and should be based on experi-
mental values of the shearing rigidity of panels subjected to arbitrary
compressive loads. In the absence ot experimental date a comnection betwesn
shearing rigidity and compressive load was assumed which was hoped to
represent fairly the actual conditions. Other improvements upon the
original treatment of the subJect were the replacement of the expression
defining the shape of the wave in the' circumferential direction by a new
expresslon which satisfled more rigorous boundary conditions and the
replacement of the integration arocund the circumference by a summation.
The new results were in good agreemsnt with the GAICIT test data.

An experimental investigation of the shearing rigidity of reinforced
monocoque cylinders carried out at PIBAL by Hoff and Boley (reference 15)
in 1946, however, resulted in the measurement of .considerably higher
shearing rigidities than expected in the case of curved panels subjected to
compressive loads exceeding the critical loads. The use of such high values
of the shearing 1’igidity in the revised theory Jjust discussed would have
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resulted in buckling loads considerably larger than those observed. At
this stage of the development the amthors begen to entertain some doubts
whether the problem could be solved by a linear theory.

Their conviction that a l:Lnea.r theory would predict correc“bly 'bhe
buckling load in general -instaebility had been based on the following
observations. The inward bulge proper was always restricted to a reglon
of the cylinder where the sheet covering was in a buckled state when
general instebility occurred. Because of the increased movebility of the
wavy curved sheet the relnforced monocoque cylinder was reduced essen-
tially to & grid consisting of stringers end rings connected somewhat
loosely by the buckled sheet. The question arises now whether the suppart
rendered by the rings to the stringers has a linear characteristic. In
experiments carried out at PIBAL with-reinforced monocogue cylinders-a.
linear connection was found between a loed applied radially to a ring and
the deflection of the point of attack. Under such a load the entire ring
distorted, whereas in tests umdertaken at GALCIT in order to clarify some
aspects of the nonlinear theory the nonlinear support was furnished by a
semicirculer element, the ends of which were -rigidly fixed. In the
general instablility 'bests both at GAICIT and PIBAL the rings were observed
to distort-slightly around the entire circumference so that the end points
of the main bulge were definitely not fixed. Because of these consider-
ations one more attempt was made at PIBAL to explain the phenomenon of the
inward bulge type of gemeral instability by a linesar theory. The results
of this investigation are ;presented. in the present report.

The strain energy method is known to yield too high buckling loads
if the assumptions regarding the deflected shape deviate from the actual
shape of deflections. An effort was made therefore to make the new
agsumptions more elastic than were the earlier ones by the use of a grea:ber
number of paremeters that can adjust themselves in the process of minimi-
. zation. Altogether nine free paramsters were incorporated in the expressim
describing the deflected shape, cne of which is indeterminate as in all
buckling problems. To the remaining eight parameters may be added the two
parameters defining the wave length in- the circumferential and axial
directions.

The strain energy and the work of the external forces were calculated
by summation as in the earlier publication (reference 14), and in the
determination of the shear strain energy stored in the sheet covering the
experimentally obtained values of the shearing rigidity were used. The
large number of parameters did not permit the development of an expres-
sion In closed form for the buckling losd but four representative cylindsis
were investigated numerically and the calculations resulted in buckling
stresses in‘satisfactory agreement with the test results. The authors
believe that the agreement obtained between theory and experiment
substantiates the claims for an essentially linear character of the prob-
lem in +the form it was set up in these calculations. Detalls of the
behavior of the buckled panels, however, cennot be explained in all
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probabllity by a linear theory. It is quite likely that better agreement
between theory and experiment can be obtained if an even more complicated,
or else a better, shape 1s assumed for the deflections.

The celculations presented hers are too lengbhy for use in structural
design. The writers belleve that the simple formmlas developed in
reference 13 are those most sultable for practical calculations. The
value of the parameter n should be teken from a diagram published by
Hoff, Boley, and Nardo (reference 16), which is a revised version of the
dlagram presented In reference 13. The differences between the two dla-
grams are the Incorporation of new test data obtailned in a series of tests
at PIBAL and the correction of the earlier test results for the effects
of stresses exceeding the elastic limit. The Importance of the theory
presented in this report is twofold. First, it can be used In the calcu-
lation of n velues in that region of the parameters r/d and ep, 7/t

which 1s not easily accessible to experimental methods. In such a manner
& more comprehensive n dlagram can be canstructed than the one available
at present without recourse to a very extensive test program involving
cylinders of the size of the fuselages of modern transport airplanes.
Second, it establishes the fundamental soundness of the linear approach

upon which the method suggested for practical calculations and the n dlagram
are based.

For the sake of completeness other publications dealing with genersl
ingtebility are now listed. In 1937 Nissen (reference 17) compared test
results obtained with reinforced cylindrical panels and complete cylinders
subjected to compression with.Dschou's theory. Satisfactory agreement wes
found after en empirical factor was incorporated. Ryder (reference 18)
attempted in 1938 to improve Taylor's theory by the use of empirical factas.
In 1942 Tsun Kuei Wang (reference 19) developed a theory of the flattening,
of monocogue cylinders subJjected to compression, but the epplicability of
his results is impaired by the fact that he neglected the shear strain
energy stored in the sheet covering. At PIBAL additional theoretical
Investigations related to the Inward bulge type instability were carried
out by Hoff end Klein (reference 20) in 1944 and & series of cylinders was
tested by Hoff, Fuchs, and Cirillo (reference 21) in the same year. A
new general instability theory was worked out by Wang (reference 22)
in 1946 in which the wave form was described by infinite series. The shear
gtrain energy stored in the sheet was not calculated but its effect was

taken into account by means of an empirical multiplying factor depending
upon the size of the panels.

For his contribution to the calculations presented in the present
report the euthors are indebted to Merven W. Mandel. Tails investigation
wag conducted at the Polytechnic Institute of Brooklyn under the sponsor-

ship and with the financial assistance of the National Advisory Committes
for Asronasutics.
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SYMBOIS

indeterminate coefficient

-8,b,c,d,0,f,g,h parametric coefficients

Istrro

Istrr

Str.bo

Istrt

cross-gectional area of stringer plus effectlive width of
sheet

)
area of stringer

width of panel msasured along clrcumference

Young's modulus

reduced modulus

secant modulus

tangent modulus

shear modulus

shear modulus of sheet covering at zero compressive load
effective shear modulus )

centroldal height of stringer

index denoting positlen along clrcumference

moment of inertia

moment of inertie of ring cross sectlon and its effectlve
width of sheet for bending In 1ts own plane

moment of lnertie of stringer cross sectlon for bending in
radial direction (about its teangential principal axis)

moment of Inertia of stringer cross section and effective
wildth of curved sheet for bending in radial direction
(about its tengential principal axis)

moment of Inertia of stringer cross section for bending in
tangential direction (about its radial principal axis)

moment of inertia of stringer cross section and effective

wldth of curved sheet for 'bendin§ in tangential dlirectim

(sbout its radial principal axis
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Uny Cpy G

index denoting position along axial direction

length of wave in axial direction

distance between adJacent rings ,

number of ring flelds involved in failure

function appearing in strain energy of bending of rings
paremster defining wave lsngth in circumferential direction
polynaomial functions of a,b,c,d,e,f,g, and h

force acting on stringer and 1ts effective curved sheet at
buckling

function appeering in shear strain energy

radius of cylinder

number of stringer fields involved in bulge

total number of stringers in cylinder

thickness of sheet covering

strain energy

bending strain energy stored in rings

shear strein energy stored in sheet

radial bending strain energy stored in stringers
tangentlal bending strain energy stored.lin stringers
effective width of curved sheet

rotation of tangent of ring

redial displacement of a point on a ring or a stringer
tangential displacement of a point on a ring or a stringer
w;rk done by applied forces at buckling

axial coordinate

coefficients used in calculation of shear strain in a
Panel due to rotations and displacements of its corners
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B angle subtendsd by a panel

V4 shear strain

o] shift of neutral axis from horizonta.l diameter at buckling,
percent of radius '

€ normal straln in a stringer plus its effective curved sheet
at buckling

€op meximm compressive straln at buckling

ecrsh compresslive ’buckliné gtrain of sheet panel

€ou 'bucki:lng' strain of a nonreiﬁforced. circular cylinder under
ugiform axial compression

ért buckling strain of a flat pansl of sheet in compression

A structural buckling index

(0] angular coordinate

- function of @ appearing in expression for w,

L function of @ appearing in expressidn for Wy

DEVELOPMENT OF A REVISED BUCKLING THECRY WHICH INCLUDES
EIGHT ARBITRARY PARAMETERS
Revised Deflection Pattern
The shape of +the bulge at buckling is determined mainly by the

radial deflections. The following expression ls chosen to represent the

radlal deflections W, occurring at buckling:

Vp = a.olzbr(l,a.,'b) sin®(nx/L) + ¢ _(c,d,e) sin6(1rx/L)

"+ 0..(£,8,h) iainlo(mx/l.)] - (1)
provided that

0 <9 < (n/n)
(1a)
0<xgL
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where

o ,.(c,d,e) [c cos nPp + d cos 2nP + o cos 3nP

+ (2.666...c - 2.3334.ed + 1.T77...0) cos Lng
+ (1.6660.0c - 1.333¢0ed + 0.TTTsse0) cOB 5mqﬂ (1)

The value of ¢r(l,a.,'b')_ is obtained by replacingc, d, and ein eguation (1b)
byl, &, and b, respectively; ¢..(f,g,h) is obtained by replacing ¢, d, and e
by £, 8, and h, respectively.

Also w, =0 when ¢ > =x/n and/for x> L - (1c)

The notation and the sign conventions are shown in figure 1.

The deformetions of the rings are assumed to be inextensional. The
condition for inextensionality is:

Vr = - bw.l./&p (2)

Equations (1) and (2) determine the tangential deflections Wyt
Wy = - (ag/n) [Qb(l,a.,'b)'sina(m/L)_ + Gt(c,d,e) sin6(:tx/L)

+ 0.(2,8,h) sin'® (srx/L)] (3)

provided that Cemet R

0< ¢ < (n/n)
el T - R SO (33')
. 0 xSt

et AT me i dadey o= U=

———— e e et tE m m e —rt—— - -— - - - [P
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where

®.(c,d,0) = [c sin n® + (1/2) 4 sin 209 + (1/3) e sin 3np

(l/ll-)(2.666...c - 2.3330-.&. + 107770003) gin h'nq’

+

(1/5)(1.6664.0¢ - 1.333¢4:4 + 0eTTTe0e0) 8in 5mp]

+

The value of ®4(1,a,b) 1s obtained by replacingc, d, and ein eguation (3b)
by 1, a, and b, respectively; ¥(f,g,h) is obtained by replacing c, d, and e
byf, 8, @&nd h, respectively.

Mlso wy =0 when @ > %t/n andfor x>L (3c)

A few explenatory remerks are now given regarding the choice of the
deflected shape. In order that the bulge be symmetric about the bottom
stringer @ = 0 the following conditions must be satisfied there: -

l. The tengential displacements must vanish:
Wy =0 when @ =0, for all values of x (4a)

and

2. The radial deflection pattern must exhibit a horizontal tangent:
(Owf39) =0 when =0, forall values of x  (4b)

Further, in order that there be a smooth transition between the bulge and
the nondistorted part of the cylinder at @ = (:t/n) , the following conditions
mst be satisfied there:

3. The tangential displacements must venish:

w, =0 when @ = (t/n), for all values of X (4ec)
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k. The radial displacemsnts must vanish:
W, =0 when ¢ = (n/n), for all values of x (ha)
5« There must be no sudden change in the direction of the tangent:
(bwr/acb =0 wher-l ® = (x/n), for all values of x (ko)

and

6. There must be no sudden change in the curvature:
(Bzwr/atpa) =0 when @ = (n/n), for all values of x (4f)

Finally, in order that thers be a smooth transition between the bulge
and the nondistorted part of the cylinder et x = 0 and x = L, the fol-
lowing conditions must be satisfied there:

T The tangential dlsplacements must vanish:

Wy =0 when x =0 (or L), for all values of @  (4g)

8. The radial displacemsnts mmst vanish:

0 when x =0 (or L), for all values of @  (4y)

and

9. There must be no sudden change in the direction of the tangent:
(awr/69 =0 when x=0 (or L), for all values of @  (41)

It can be shown that equations (1) and (3) satisfy all the boundary
conditions enumerated in equations (4a) to (4i). (The arbitrary functim
of x which would normally appear in equation (3) as a result of the inte-
gration of eguation (2) 1s zero as a consequence of condition (ka).)
Typical examples of the deflection patterns of a stringer and a ring, teken
from the results of the calculations, are shown in figures 2(a) and 2(b).
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Calculation of Strain Fnergy

Strain energy stored in rings.- The strain energy stored. in any one
ring is

t/n ‘
[y + (2n/o0d) | 20 (5)

If the value of w, is substituted from eguation (1) end the strain enérgv
is summed over all the rings, the following expression is obtained:

/n m
U, = (1/2) <a§/13) [ {[@r(l,a.,'b) +¢i,‘1(l,a,'b)] Z (1), gin® xd/I)
-7/n _

31

U= (1/2) [(EI)r/rg_] f

-/

+\E’r(c,<1;9) + Qi‘l(c:d:e)] i (E.[)r Sin6ﬁtxv1/l)
S =y

s [on(e,am) + o2 0m)] i (e1),, s1x’® @xJ/I)} o (6)
J=1

where m is the total mumber of rings included in the wave length L.

The integration yields a result in closed form. The sumations contained
in equation (6) can be evaluated algebraically as fumotions of (m + 1).
They are given in table I. If all the rings have the same bending

rigidity (EI),., the total strain energy U, stored in all the rings becames

U, = (1/2) a§/z3) (ET) r:r[M(l,a,‘b) Z smhéﬁ,g_)) + M(o,d,0) Z Binlagi J)
J 3 :

+ M(f,g,h) Z sinao@——mj b + 2M<1 ’a"1> Z sin® (-%
+ c,d,6 m +
J J
+ oM 1’3’:‘) Z sinio ——-"JD oy (©+%5° a1n™® 73 (7)
28, 3 o+ £,8,h ‘m+ L



)
iy
- obtalined by replacing o, d, and e by f, g, and h, respectively; M 1, 3‘_’:) is c'b'ba.inad 'by replac ng d

vhere

M(o,d,e) = [(hn2 - .1.)2 + (2.333...)2(1602 - 1)2 + (1.333...)2(25n2 - 3)2] a?

GOGT *oN K VOV

\ 2 - LN

r PN
2[_(2.333...)(1.777. ) (16n= - J) + (1.333...){0.TTT...) (250" - 1

de

1M

+ [(93.2 -J)a + (l-m-.-)z (l&g_z - QE + (Q!m!ee)a(ﬁna - 1)2]32

-

2 E2.666...)(2.333...)(16n2 - )% 4 (1.666...)(1.333...) 5a® - 7] ca

s 2 z2.665...)(1.777...)61.6n2 S D)% 4 (2.666...)(0.777.-.) (2502 - 132: o8

+ [@2 D)%+ (2.666...)2 (6n? - D ° 4 (1.666...)2(an” - 1)2] o2 (7e)

The value of M(l.a. 'h\ i1s obtained by replacing ¢, 4, and e by 1, &, and b, respectively: I.lf-?

by ad, de by (1/2)(ae + bd), o2 by be, cd by (1/2)(d + ac), ce by (1/2) (e + Dbe), and o2 by o3

M(f 2’ \ is obtainsd by replacing d° by dg, de by (1/2)(dh + eg), o2 by eh, od by (1/2)(cg + af),
>
ce by (1/2)(ch + ef), and o? by ef. (Sim:lla.r conalderations can be used to find M ’a’D>

£T



Strain energy stored in stringers.- The straln energy stored in the atringers becauege of bending
in the redisl directlon 1is

Uptry = ) (1/2) (&), f ((Pofor)” ex o (®)
1 - o

where the summation is extended over all the stringsrs contained in-the bulge. Substitution and
integration yield

Ustry, = (1/2) G‘h/&% &gz (EI)Btrr‘:Q@gi(l a,b) + cué:b (c,d,0)
(16381]- (fjgjh) + (5)@ (1 a,b)@ri(c d_,e)

+ G%— ry (1,805, (£,8,0) + G%@Qri(o d,e)d:ri(f,g,hﬂ ()

The strein energy stored in the stringers beceuse of bending in the tangentiel direction is

Us‘br.b =Z (1/2) (m)strt [ éawt/axE)E dx (10)
i

T

GOST *ON HIL VOWM



——

= m—— —————— -

Substitution and integration yleld

Uptry = /) @4 (/) ) (g,
. i

!

Bb.%i(l;a;-b) + (-E:l—l) 6?__ (c;d-:a)

o/ Gy

GOGT *ON NI VOVN

+ (BBD) 42 (,g,n) + (Do, (1,2
1538 Yy (8 + (0, (Lms

+ G_%) o0, (Lia,b) oy, (2,8,0) + (2B8) 0y, (0,8,0) 0, (f,s,h):[ (1)

N, =iy

Because both the ¢ funoticns and (EI-)strr and (-EI-)strt vary from stringer to stringer, the summations
appearing in equations (9) and (11) have to be evaluated numerically.

Strain energy of shear gitored in gheet.- The shear strain energy per unit volume is taken as

the average effective shear modulus Gs.f'f mltiplied by one-~half the sdquare of the average shear

strain ¥ 1in the panel. The latter 1s caloulated from the displacements of the four corners of the
panel. Then the totel strain energy of shear stored in the sheet is

- U, = (1/2) > 26, Ltd (12)
gh = VTl 7 Yeff TL s,
vhere Ijtd i85 the volume of a paneil.
Y Aammarmdoa 1vnam blia  see s dewnd A AT wmenalhannd AacT wude

Mlam P o o e T ~ A bl
u ALY L

B

E
F

The effsctive = ulus dspends upon the geomstric and mechanisal propertiss ani
average normal astr panel. Its value was taken from the empirical curves esteblish
sarlier at PIBAL and pregented in figure 24 of reference 10.

¢T
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The average angle of shear 7 was calculated from the equation

7 = (1) [% ( ¥re, g+ Vraaa, g Ves g - 141, 341)

- W - W + W + W
¥ |°‘t| ( 1,3 7 Tti41,3 " Tt t1+1,3+1)

-~

+ l"hl d (’ 3,5 " "o141,3 T Vo1, 0 F Yoaaa, ;}+1)] (13)

wherce the first subscript refers to the circumferential location and the
second to the axial location of the cormer of the panel, as shown in

figure 3. The rotation W, of the tangent of the ring is given by the
relation

wy = (1/r) (Owy/39) (14)-

The velues of the factors a,, oy, and ap were calculated from the
equations

o, = B@.l + 0.00023852)
ay = - 0.5( - 0.01666...8°) g (15)
a = - (1/B)(0.5 + a.‘_) i




-

- A s e

Substitutions yield

m 3-1
Ugy = (1/2) a5 (sa/I7)eg Z ei Bore/o) {E‘iﬂe s - em® XM adg, (1,0,0)
=0

GOST *ON NI YOV

6 x 6 x 1 0« 10 x + 1) 2
+ Ea:l.n ﬁ—i - 8in _1%J+_+I_l Q (o,d,e) + Eﬂ.n 'n%f_ gin -éj:__i_Qi(f,g,h) (16)

1

where % 1s the number of stringer filelds :_lnvolved in ocne-half of the aymmetric bulge. The meaning
X .
Fi

Q (c,d,e) = mr[- !Dri(c,d,e) + ¢r1+l(c,d,a)]+ (l%[/n) [Qti(o,d.,e) + ¢ti+l(c,d,e):l

+ lanl(d./r)n E— (1/n) @ri'(c,d,e) - (1/n)¢ri+lr(c,d.,e)] . - (162)

1t 1s posasible but cumbersome to sum up the trigonometric funotions describing the deflected shape
in the axlal direction contained in equation (16). It was found more convenient to carry out these
sumetions numerically. The same practice was followed as regards the ¢ funobions.

LT
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Work Done by Extermal Forces

Equal end opposite forces are assumed to be acting at the x =0
end x = L ends of each stringer. The distance between the points of
application of these forces shortems at buckling. The product of
this shortening and the force is the work done by the force. The total
external work is the sum of the work done by the forces acting on each
stringer contailned in the bulge:

W= (1/2) Z P, /L l:(&wr/bx) . (ow,/2) 2] ax (1)

The axial strain distribution is assumed to be linear. Then Pj, the

external force mcting upon the ith stringer at buckling, may be expressed
in terms of the buckling straln ¢;p of the most highly compressed stringer

and is:

5 + cos
Py = {(EA)y (——gﬁi € r (172)

where rd is the shift of the neutral axls at buckling. Substitutions and
integration yleld:




e = e m———

Wa (1/2) a."(:t‘/L) € L (Ba) k“ g _‘;“; ) i(l/a) L@n(l,a.,b) + (1/n)2 @-hi(l,a.,'b)J

JE

r -1
L? (0,a,0) + (1/m)% oF (0;'1 9)_| w”;) l_ri(f:s:h) + (3/n)" %1(1’-’3’11)_1

7
+.

\- (1,2,D) @ri(c d,e) + (l/n)z%i(l a,b)hbi(o,d e)l

@3;

RN

) ¢ri(l 8,5)e,, (f,8,n) + (1ﬁn)4bti(l,a,h)¢ti(f,g,h{J

E'\

y ~ - _ [ |
+ (54%5) L@ri(p,d,e)Q)ri(f,g,h) + (l/n)zw_bi(o,d.,e)dtti(f,g,hl\j

The summations encountered in equation (18) wors performed mmerically.

Caloulation of Buckling Load
The buckling condition is

Ur + Us‘brr + Ustrt + Ush m W

| (18)

(19)

GOGT *ON N VOVA
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where the values of the strain energy quanti-ties and of the work mmat be
taken from equetions (7), (9), (11), (16), and (18). Eguation (19) was
solved for g, which is a multiplying factor in the expression for W,

and. the result minimized by means of the following procedure.

Integral values of s and. (m + 1) fFirst were chosen for the
nunber of stringer and ring fields included in the bulge. On the bhasis
of tkese tentative values the ¥, M, and Q functions reduced to quadratic
expressions of the elght parameters a to h. Next €, was assumedj this

permitted the calculation of the shift of the neutral axis, the effective
widths of sheet (taken to act with the stringers), amnd the moments of
inertls of the stringers and made 1t possible to read the values

of (Gepp/Gp) from the sppropriate graph. All necessary sumstions were

then carried omt. Substitution of all the results in equation (19) made
1t possible to obtain a solution for ¢gp Iin the form: -

_P (1,a,b,c,d,e,%,8,h)
P2 (l,a.,'b,c,d.,e,f,g,h)

€cr (20)

where Py and Py are quadratic polynomlials in the eight parameters a
to h. Minimizing this expression for eg. wlth respect to each of these
eight parameters is equivalent to setting

_ M 3p/fPe 3p1/Bb 3p1/dg _ dpy/om
for "3 " SpafSa " 3/ 7" " 3paf  dpefm

(21)

where the partial differential coefficlents of Py and P, are linear

functions of the eight parameters. Equation (21) represents nine comnections

between €.y &nd the eight parameters. They were solved by & trial-and-

error procedure. First a value of €.p WS aésumed., and a et of values

of the elght parameters was determined by solving elght linear equations.
Thege values were substituted into the original quadratic expression to

obtain a calculated value for €op This procedure was repeated with new

assumptlions for e'cr until the calculated. value was reasonsbly close to
the one agsumed. In order to locate the absolute minimum value of € oy’ it

is necessary to perform the calculations for a number of different cholces
of 8 and (m + 1). An example of the mumerical calculations is shown in
the appendix.
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COMPARTSON OF THEORY AND EXPERTMENT

The theory wes applied to four monocoque cylinders tested earlier
at GALCIT (references 4 to 8) and PIBAL (references 16 and 21).
Dimengions of the cylinders showing rings and stringers are given in
Pigure 4. Typical buckling patterns obtained in the calculations are
shown in figure 2, and a tabulation of the numerical results is presented
in teble II. Theoretical and experimentel stralns rather than bending
moments are compared because of the following reasoning. It was found In
the calculations that the buckling strain remsins practically constant 1if
a normal strain distribution differing materielly from linearlity rather
than a linear normal strain distribution is asssumed tor exist at buckling,
This is so since the most highly compressed stringer (@ = 0) contributes
mainly to the bending and work terms and also since the other strain
energies are little affected by changes In the strain distribution.
Although ths critical strain 1ls little affected by chenges in streln distri-
bution, the value of the bending moment may vary considerably. In order
to calculate the latter, it is thus necessary to know the strain profile
existing at buckling. Such knowledge was not available for the GALCIT
cylinders. It was found convenlent to assume a linear strain distribution
‘for the PIBAL cylinders as-well as for these. )

The axlal wave length predicted by theory for PIBAL cylinder 11 was
larger than the total length of the test specimen. It was found. experi-
mentally in references 4t to 8 that 1f the length of a cylinder is at least
twice 1ts diameter its buckling load 1s independent of 1ts length. This
1s not quite true for PIBAL cylinder 11 but the effect of the smaller length
should be unimportant.

The four cylinders were so chosen as to cover the wldest possible
range in physical properties and to obtain critical stresses below or not
far in excess of the proportional limit. The latter requirement was set
up- In order to prevent the variation in the sffectlive modulus from
attalning maejor importence. As may be seen from table IL the theoretical
buckling strains are greater than the corresponding experimentel values as
they should be when the strain energy wethod is used. The deviation is
small; it amounts to 22.9 percent of the experimental value in the worst
case and. to 8.3 percent in the best case.

CONCLUSIONS

The strain energy theory developed for the talculstion of the critical
load for the inward bulge type of gemeral instability was found to give
critical stresses 8.3 to 22.9 percent higher than the experimental values
obtained with four representative cylinders tested at GALCIT and PTBAL.
This agreement is congldered satisfactory for most practical applications

e e e s - e v - —— — -




22 NACA TN No. 1505

but it 1s likely that better agreement could be obtained by means of more
comprehensive, or more suiteble, assumptions for the deflected shape at
buckling. The numerical calculations involved are too lengthy for use in
structural design. . c .

For this reason it 1s suggested that practical. calculations be carried
out with the aid of the procedures suggested in the paper entitled “Genersl
Instability of Monocoque Cylinders" by W. J. Hoff (Jour. Aero. Sci., vol. 10,
no. 4, April 1943, pp. 105-11%, 130) and in NACA TN No. 1499. [The sig-
nificance of the present investigation is twofold. First it permits the
calculation of velues of the parameter .n, mnseded. in the practical pro-
cedure suggested, in a region vwhere experimental date are not available and
too expensive to obtain. Moreover the satisfactory agreement between
results of the present theory and experiments indicates:that the general
instability phencmenon is essentially a linmear problem and can be calculebsd

-

by means of & linear theory. .

Polytechnic Institute of Brooklyn ) oo
Brooklyn, N. Y., March 3, 1947 : - . .
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APPENDIX

CALCULATTONS FOR GALCIT TEST CYLINDER, 6T

1

23

In this appendix details of the calculations performed In determining

the critical strain for GAICIT cylinder

mechanical propertles for this cylinder are:

Iﬂ-, j-n. L] e L L ,
r, j-nl ° [ ) L L L]
S L] L ] L o o L] L ] .

t’ 1110 e & » & o

Astr,ii.-a ¢ o ®
Ir,in. o e o o

Isuro’ inl L) L

Is-u'to, in. e o
Eo, PSSl o o o o o

G'O,Psinnoco_

The reported

cutset of the calculations . 1s teken as 33 x 10-%.

experimental critical strain is

67 axre shown.

oc-ronc3.9x10

The geomstric and

o [ ] h‘

. 10
. 12
0.012

0.0324

, 219.39 x 10-T
374 x 10

563 x 10
10.5 x 108

-6
6

29.5.x 10-¥. At the

The value of

r® 18 calculated to be 1.692 inches on the basis of a linear strain
distribution. This.permits the setting up of t=ble A.




TABLE A

[acrsaaxm-‘*;runl.s;em-:[

(1) (2) (3) (1) (3) {6) (7) 8) . (9) (10) | ()| (12)
1 ¢ 2 Tatr, Totry o/ (-2 x 10%) Corr/G0 | Aarr | Acre(®/9%z) | Baeo | Btan| Bred
0 |33.00 x 10~} 1.297 [ 5.996 X 104 | ccccaccs 15 0.3575 | 0.obhgy | o.0k97 |10 | 6.63] 8.
1 .22 1. 6.082 2s.30 x 10* 18.23 .35% .Q gggﬁ'{ 10.5| 9.50 9.3
2 .89 1.721 | 6.366 48.24 .55 . 35 ~Oho6L . 10.5 | 10.5 [ 10.5
TABLE B
s - 4]
i cos (2l [k} oos (4ai f4} oos (6L /h) cos (811 /4) cos (1071 /4)
0 1 i 1 1, 1
1 0 =1 0 1 0
Hﬂltipiim [+ a -] -656...0 1.555..-0
Toe @r(c,ﬂ,e) ’ -2=333=eeé..+leme L] "lessseee@_'!'oemeees
i sin(exi /i) sin(hxd /i) sin(6xi /L) 8in(8x1/h) sin(10x1/4)
0 0 0 0 0 0
1 L 0 -1 0 1
Multipliers c 0.54 0.333...0 0.666...c 0.333...0
for o4(c,d,e) -0.5833.. .a40 4. . 00 -0.266...+0.155. . .0
Moltipliers [ 24 3e 10.666...0 8.333+ 4.0
for -0,.'(c,d,8)/n ~9:3334 0047111, 0 -6.666...d+3.888...0

€04T "ON NI VOVN
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Colum (1) refers to the stringer station. Column (2) is the straln at
the locations of the stringers. Colum (3) is the effective width of
curved sheet calculated from the equatlion:

ew = (1f)(a/r) {o.st + 1.535 [(t/d) er - 0.36)r" "12/3} (1)

Columms (%) and (5) give the moments of inertia of the stringers plus
their effective width of curved sheet calculated from the equations:

;{h + (£/2) - [(aw)Q/ahxj}a

0.8[(2n)2/2kr] 2wt (a2)
(1/2wt) + (1/4) ¥ E Y/ IEJ (h2)

stry © Istrro

Totr, = Tatrg, + (1/12) (2w)3+ (A3)

Column (6) indicates the ratio of the actual strain in a panel when the
monocoque buckles to the buckling strain of a panel of sheet in compres-
sion calculated from Redshaw's formula:

ecrgh = (Gf.l./a) + ‘/(fo/2)2 + cha = 2.2 X lO'J'" (All.)

The values of colum (7) are read from figure 24 of reference 15. The
entries in colum (8) are gilven by Agtr + 2wt. Those in colummn (9) can
be computed from columms (2) and (8). If the strain in some members is
ebove the proportional limit it 1s necessary to use reduced moduli of
elasticity. In calculating the bending of the stringers the Von
reduced modulus was used; in calculating the work of the extermal
forces, the secant modulus was used. These values are based on the
curves of reference 23 and given in columms (12) and (10) of table A.

For the evaluation of the ¢ Ifunctions it 1is convenlent to set up
a tabular arrangement. For s = k4, 1t is given by teble B. By using
this table the polynominal &.(c,d,e) for 1 =0 1is found by multiplying

in each colum the expressions in the row below the first double line
by the nmumbers in the corresponding columms listed in the first row of

A i mem v m emem e —— e e = P e = —_—— —~——

- e s b A arm =



TABLE C
.[E - ﬂ
1 ¢_.(c,d,e) 0. (c,d,e) ~tp'(c,d,0)/n
015,333...0-2.066,..4+3.555...0 0 0
1§2.666.0.0~34333000@+1aTTT0248 | 1033300.0=042666.4.8-0.LTTTc =20 | 9233344.6-6.6664..8+0.888...0
TABLE D
s = 4]
1 Qs (o,d,e)
~ A i fAan - A 1AL OfhA a A vale=WLLLl o
v Vel T390V G =Uw loTUVOHY L =Us LID HUOUD + ¢ o B
1 0.1454600 ¢ +0.084T120 4 -0.116546666...0

GOGT *ON M VOVE
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the table and adding the results of all the products. In a simllar manner
the polynomial for &,.(c,d,e) for 1 =1 is obtained as well as the two

expressions for each &;(c,d,e) eand -9,.'(c,d,e)/n. The results are pre-
sented in teble C. :

The function [-Qri(c,d,e) + °1‘1+1(°’d"°)] and the two others needed
to calewlate Q4(c,d,e) can be determined with the aid of table C by simply
subtracting or adding the polynomials in adjacent rows for each columm of
that table. In doing this it mmust be remembered that all the ® functions

‘vanlsh when 1 = 2. The results are not shown here. When S =12, 8 =k,
end n= (12/4) = 3 equation (15) glves:

o, = 0,05239% )
log|/n = 0.165905 ? (a5)
| (8&/T)n = 0.006854 )

The value of Q%t(xc s4,0) determined from eqation (16a) is recorded in

table D. The other ¢ and Q functions are derived by replacing c ,4,0 in

tables A to D by 1,a,b, and f,g,h, respectively. In the theory the & and Q
functions appear squared. It is thus necessary to square the polynomials

of tebles C and D. The results are not included here. The M functions

are taken from table IITj; in this Instance the ones corresponding to n = 3 .
are needed.

The next step in the calculations is to assume a value of (m + 1),
the number of ring fields involved in failure. The value of (m + 1) was
teken as T and the summations appearing in equations (6) and (16) were
evaluated mmerically. (Teble I afforded a check for the former.) These
results as well as the coefficients of the ¢ functions Ffor the, stringer
bending (equations (9) and (11)) and the externmal work {equation (18)) are
tabulated in table IV. These numbers are then mmltiplied by the appropriate
one of the M, 92, and Q2 functions to yleld for each strain energy and
for each value of 1 & quadratic form in the eight parameters congsisting
of 45 terms. These are to be found in table V. For the shedr strain energy .
a constant value of Gepp/Gp of 0.3575 is taken so that the quadratic expres-
sions for 1 = 0 and 1 = 1 cen be combined into one quadratic expression
glven in table V.

For purposes of calculation it is convenient to multiply each of equa-

L
t1ons (7), (9), (11), (16), end (18) by - 10 , vhere E

(1/2)a% (x2/L)Egqq,

is

secy
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the secant modulus of the most highly compressed stringer, and solve for

L
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6oy X 10" instead of €., In order to calculate p; and ppy in

equation (20), each row in table V mmst be multiplied by its appropriate
factor. These are glven as follows with numerical valuss calculated from

data previously presented:

Straln onergy Multiplying factors
In(m+ 1) E. L
Rin 107 = 20.
& nr3 Esecq T % 23
Stringer,
. radial
1=0 [2/11(1:1 + 1)ﬁ Ered x 10% = 0.06227
I‘O
sec
Ered
1=1 [2 2 %l _xedy o,
2ln /Ll(m + 1) Eseco Istrrl X 10 0.15282
Stringer
tangertial [2/L2(m + 1)3 Fredy L% 10% = 0.07069
i=1 SBCO
Shear G
1=0andi=1 [:‘*tr/ﬁs(m+l)]( )(eff)xm4=m3.55
seco GO
oo 5 + o8 Od) S°°> 0.0k49T
841 Eseco
i=1 (5 + cos 3°°> = 0.08520
3+ 1 Egoc




TABIE E

Matrix® for sorxloh-35

a b} e a e £, e h ~RES
692.2046826 | -46L.4565336 | 588.7416155 ho1.9358354 | -332.9898063 | -h83.8773353 | L409.2661605 | -273.4390178 | -818.5987THh
343.7051960 | 385.941h0o7 | -332.980806% | o46.3400098 | 316.4808330 | -273.4394178 | 202.2676766 | 540.998048L
566.3080636 =AT5.6672k1h 305,02204Th ho1.3603230 | -kle. 7307501 262,437h082 700, 4413908
hoh.3549633 | -267.3909489 | -K12.7507501 | 351.6459548 ~231.k902753 | -588.7h16157
198,3617120 262.437h082 | -231.4902753 172.0563%8% 38.941k027
Mk 5865972 | -372.6801h02 2354158705 575574047
319.5626629 | -209.1588705 | -L83.8773352
156.1653638 | 316.4808330
9745640600
Valuss of the unknowns
0.620032608 | -0.80035585L | -0.018836025 £2.015640161 3.011252608 0.572555092 | -0.hs700413% -L.nk7918125

COGT O NI VOVH
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The expression €. = (p]/pg is obtained by multiplying the fore-
going factors by the entries in +table V term-by-term and adding. A
firgst guess for ¢ o X 107 equal to 35 1s made. The c\orresponding

elight equations are contained in table E. They were solved by Crout's
mothod (reference 24). The resulting values of the elght parameters

were substituted into equation (20) to yield &, = @J/pé = 36.79 x 10~%.

On using 3%.5 as a second guess for €gp X ]Dl",_ a valus of 34.67
was obtained which was consldered close enough to the new guess to termi-
nate thls procedure.

A graphic method may be used to determine accurately the critical
strain after several steps In the approximate solution of the buckling
equatlions have heen underteken. At buckling the velue of-the determinant
formed by the coeffliclents of the elght equations with the right-hand-side
olements transferred to the left-hand side mmst vanish., If a plot of the
value of the determinants against the strains assumed at each stage is
mede, then the aritical strain will correspond to the zero value of +the
determinent of this curve (extrapolated if necessary). Also the value of
the determinant will be positive or negative, the sign depending on
whether the agsumed strain is below or above the critical strain., Justi-
fication for these statements may, be found in reference 25. In this case
such a procedure ylelded ¢, X 104 = 344 (see table II).

Instead of“repeating the calculations for new values of (m + 1) s 1t
was found more sultable to adopt the followlng scheme in minimlzing the
buckling strain in the axial direction. It can be shown that if
®(1,a,b)/o(c,d,e) and &(1,a,b)/8(f,g,h) are independent of @, +then the
ring, stringer, and shear energles divided by the external work become
nearly proportional to (m + 1)2, 1/(m + 1)2, and (m + 1)2(1 - cos maf: T)
respectively. Since this requirement is approximately fulfilled, it is
believed that the critical strain found by proportioning the three strain
energies according to the foregoing factors will be close to the critical
strain derived in the rigorous manner. This procedure is permissible
provided that the critical value of (m + 1) calculated in this manner is
near the value for which the calculations were carried out rigorously,
7T in this instance. This method entalls the assumptlon that the number
of ring fields Involved in failure is not an integral nunmber. The itrang-
formation from (m + 1) = 7 to (m + 1) = T.63, the approximate critical
value obtained, is Indlicated as follows:.
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Strain
Energy m+1)="7 (m+ 1) = T.63
Ring 207. 754 27,020
Stringer, radial
1=0 216.256 182,018
=1 67.735 5T7.011
Stringer, tangential
1i=1 10.003 8.419
Shear
i=0endi=1 216.226 218.734
Z =Py . TLT.9Th , 7134202 -
€or X 107 = 3’-,-067 Ecr X 10 = 3)"'.1”"'
Do 20,709 20,709

Since the value €. X 10% = 34.4 instead of 34.67 corresponds to crit-
icel strain for (m + 13‘ = T, the correct criticel strain for (m + 1) = T.63
may be found by the following equatliont

6, X 10% = (3hoih/34.67) (3hak) = 3hed7 (46)

As seen from teble II, assuming s = 2 or s =6 ((m+ 1) = 7 in each case)
gives values of the critﬁcal strein higher than the foregolng one obtalned.
Consequently 34.17 X 10~% may be teken as the crifical strain.

e e e e o



32

1.

2.

3.

5e

6e

Te

9

10.

12,

13.

e e e e e e —

NACA TN No. 1505
REFERENCES

Dschou, DJi—DJuan Dile Druckfestigkeit. verstelfter szylindrischer
Schalen Iuf tPahrtforschung, Bi. II, Nr. 8, Feb. 6, 1935,

. 223-23k.

Fliugge, We: Die Stebilitét der Krelszylinderschale. Ing.-Archiv.,
Bd. IIT, Heft 5, Dec. 1932, D. 463.

Taylor, Je L.: Stability of a Monocoque in Compression. .
R. & M. Nos 1679, British A«R.Cs, 1935.

GAICIT: Some Investigations of the Gensral Instaebility of Stiffened
Metal Cylindsrs. I - Review of Theory and Bibllography.
NACA TN No. 905, 1943.

GAICIT: Some Investligatlions of the General Insteblility of Stiffened
Metal Cylinders. II - Proliminary Tests of Wire-Braced Speclmens
and Theoretical Studles. NACA T No. 906, ,19%43.

GAICIT: Soms Investigatlons of the General Ingtabllity of Stiffened
Meotal Cylinders. IIT - Continuation of Tests of Wire-Braced Speci-
mens and Preliminary Tests of Sheet-Covered Speclmens.

NACA TN No. 907, 19)"-30

GATCIT: Some Investlgations of the General Instabillity of Stiffened
Metal Cylinders. IV - Continuation of Tests of Sheet-Covered
Specimens and Studies of the Buckling Phenomena of Unstiffened
Circular Cylinders. NACA TN No. 908, 1943,

GAICIT: Some Investigations of the General Tnstebility of Stiffened
Metal Cylinders. V - Stiffened Metal Cylinders SublJected to Pure
Bending. NACA TN No. 909, 1943.

Hock, O. S.: The Stability of Orthotropic Elliptic Cylinders in Pure
Bending. NACA T No. 834, 1937.

Brazier, L. Ge: The Flexure of Thin Cylindrical Shells and Other
"Thin" Sectionss R.& M. No. 1081, British A«R.C., 1926.

Hoff, Ne J.: Instebllity of Monocoque Structures in Pure Bending.
Journ R.A.S.’ vol. m haTo P 328 April 1938 PP 81-314'60

Von Kérmhn, Theodore, and Tsien, Hsue-Shen: The Buckling of Thin
Cylind.rical Shells under Axial Compression. dJour. Asro. Sci.,
vol. 8’ jelo Y 8 June 19,4'1, PP, 303-312.

Hoff, Ne Jet General Tnstability of Monocogue Cylinders. Jour.
Aero. Sci., vol. 10, no. 4, April 1943, pp. 105-11%, 130.



NACA TN No. 1505 33

1k,

15.

17. ’

18.

23.

ok,

Hoff, N. J., and Klein, Bertram: The Inward Bulge Type Buckling of
Monocoque Cylinders. III - Revised Theory Which Consliders the
Shear Strain Energy. NACA TN No. 968, .1945.

Hoff, N. J., and Boley, Bruno A.: The Shear Rigidity of Curved
Panels under Compression. NACA TN No. 1090, 1946.

Hoff, N. Je, Boley, Bruno A., and Nardo, S. V.: The Inward Bulge
Type Buckling of Monocoque Cylinders. IV - Experimental Investi-
gation of Cylinders SubJected to Pure Bending. NACA TN No. 1499,
1948.

Nissen, O.: Xnlckversuche mit verstelften Wellblechschalen bei
reiner Druckbeanspruchung. dJehrb. 1937 der Deutschen Infitfaehrt-
forschung, vols I, pp. 452-458,

Ryder, E. I.: General Instebility of Semimonocoque Cylindsrs. Air
Commsrce Bull., vol. 9, no. 10, April 15, 1938, pp. 241-246.

Weng, Tsun Kuei: Buckling of Semimonocoque Structures under Compres-
gsion. Jour. Appe mcho, vole 9, NOe 3, Septe. 191!-2,
pp. A-117 - A-121,

Hoff, Ne J., and Klein, Bertram: The Inward Bulge Type Buckling of
Monocogue Cylinders. I - Calculatlion of the Effect upon the .
Buckling Stress of a Compressive Force, a Nonlinear Direct Stress
Distribution, and a Shear Force. NACA TN No. 938, 194k.

Hoff, N. Je, Fuchs, S. J., and Clrillo, Adam Je: The Inward Bulge’
Type Buckling of Monocoque Cylinders. II - Experimental Investi-
gation of the Buckling in Combined Bending and Compression.

NACA TN No. 939, 194k,

Weng, Tsun Kuei: General Instability of Semimonocoque Structures
under Bending, dJour. Aero. Scil., vole 13, no. 1, Jan. 1946,
PP. 29-37. '

Templin, Rs L., Hartmeon, E. C., and Paul, D. A.: Typical Tensile
and Compressive Stress-Strain Curves for Aluminum Alloy 24S-T,
Alclad 24S-T, 24S-RT, and Alglad 24S-RT Products. Tech. Paper No. 6,
Aluminum Research Labs., Aluminum Co. of Am., 1942.

Crout, Prescott D.: A Short Method for Evaluating Determinaents and
Solving Systems of Linear Equations with Real o6r Complex Coef-
flclents. Trans, A.I.E.E., vol. 60, 19,4'1, PDe 1235—12’-‘-0.

Boley, Bruno A.: Numerical Msthods for the Calculation of Elastic
Instebility. Joure Aero. Scil., vols 1b, no. 6, June 1947,

P. 337-348.

e ——— e e



TAHLE I

SMOATION (F STRAIN EWERGY OVER ALL RINGS

Y

()™ 1 2 b " 6 T 8 9 10
-1 o] 0 0 0 0 +] 0 ¢ v} 0
g (2/2) (m+1) b 1 1 [ 1 bR 1 1 1 1
3 (3/8)(me1)| 27/32 /120 ek3 /e Teg/2048 af7/age 6361 /32768 19683/131072 590L5/524268
Ty (r0/32}(m1) | 24h/128 sk /512 £110/2048 8320/8190 33024/32768 131584/131072 ?naalalsaheaa'
5 (35/128) (msl) |  625/522 2250/2048 Bres/tage 29375/92760 106230/1310T2 3B3Ty/ 524208
6 (oi/me)ma)| serefoohs | wso/mse | wuo/smed | uoméimoe | séameselese
7 (v62/2048) (m+1)| 12005/8192 khg33 /32768 163t99/131072 636666/552h2688
8 (m6/tga) ) | maB8/3eres | aohevfalore | Thostl/sehess
9 (&w/;ﬂsa) (me1)| =:B76L/232072 831 202/32k 088
10 (24310/13107R) (m+1)|  923790/52heB8
n t ¥ : Y 1 1 (92378/524288) (owe1)

W
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Strein usedlsmin unedls:l.an of| Megituds of Bt;fn' fron, New | Exveri- .
el e B I e T M - B (. P
Cylindsx|s [(m + 1) 1 (m+1) (@ + 1) il \ "Faxp
PIBAL o x 10°% + £.309 x 10236786 x 107 |
orlinger|6! 7 lemx107* |ss + 1.08h x 10%2130.75
n | 2.6 - 0.438 x 1019| 27,14 26.1x 07| 9.55 |20.859 x 104 6 |20.86 x 2074 8.3
PIBAL, 19 - 1.925 x 1012|20.98
oylinder{6| 7 [27.5 18.7 - L.543 » 1012(18.79 18.6 7.5 |18,13 7 |18 13.3
54 18 + 8:812 x 107 |22.48
CALCTT 16.0 + 1e.9L3 x 1012]18.04 1T.2 7.26 |17.2 8 | 22.9
oylingar|k| T |15 16.k + 8.316 x 1072|18.32
30 15.7 + 5.4hs % 1032 18.7h : \
QAICTT |2 35 I B ~amn]98.6
eylinder|d| 7 |35 35 - 2,771 x 1072|36.79
67 |4 34.5 . 5.7h9 % 1012 3467 kb Te63 13407 | ememeen £9.% 15.8
6 Lo - |-170.65 % i0%2|&0.88 .
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TARLE TIT - M X 10"h

a2,a2,62 | ev,de,en 12,6202 | a,00,fg b,ce,fh 12 02,£2

n ad,ag,dg llagaa + dn)| be,bh,eh 1/2(cg + af) :lL/g oh + ef)| o,f,cf
e i et AT

2 1.9629 -2.6628 0.9849 4. 6476 3.152L 2.7729:
2.5 3.871h -5.2521 1. 91;4365_ -9.16362 6.216645 5. L6T7005
2.666...| 4.7083643 | -6.38755378 | 2.36517478 | -11.1438k979 "7.5601+8:|.32 6.6483359
3 6.725340TH1| -5.123990123 | 3.379410699 ~15.916029629| 10799091357 | 9.495229630
3.333 9.24650181 | -12.5u446kTh | 4.64T72851T | -21.88093464 |14.84T23739 [13.05364357
4 16.02545 -21.74153333 | 8.05667222 | -3T7.919000 25.7T73191666 |22.62125
P 31.3757200 | -42.567h6666 (15.TTT5644 | ~Th.23455999 [50.37909333 |bk.285k0
6 54.,28857036 |-T73.65386173 |27.302968313 |-128.44081481 |87.16917901 |T76.62231482 |

T@Tf

ot
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TABLE IV
COEFFICIENTS OF M, 02, AND Q2 FUNCTIONS FOR
STRATN ENERGY AND EXTERNAL WORK

[(m+ 1) = 7]
Ring > em®(xy/7) 2.625
strain energy | > sinl®(xy/7) 1.579101562
1020 (x3/7) 1.218258722 |

22 sin°(n§/7) 3.8281249952
23 ain2(x3/7) 3,158203122
2 2 ainiO(x)/7) 2. Th2U92E Tkl

Stringer Coefficient of @ (1,a,b) 2

strain energy | Coefficient of & (c,d,e) 6.890625
Coefficient of ¢2(f,g,h) 14.1830443
Coeffiloient of gi a,'b§ sc,d. e; 3.75
Coefficient of e,b) ¢(f,g,h - 3.28125
Cosffioient of ¢®(eo,d,e) ¥(f,g,h) 17.8857421.8

Shear 2

strain energy | 2 l- gin2(73/T7) - sin2n(y + 1)/7] 0.658802046
> [sinG(zJ/'() - ooy + 1)/7/° 0.892954708
5= [ewn?2(xy/7) - stnkx(y + 1)/7)° 0.967843396
2 > [otn®(x3/7) - sinn(y + 1)/7]%1:1 (x3/7) - stobx(3 + 1)/7) 1..235424088
2 > [sma(xa/n - e1n®n(y + 1)/7] [81n10(x3/7) - 81010n(y + 1)/ 1.0B0996077
2 3 [s108(x3/7) - atnbx(y + 1)/7] [52010(x4/7) - e1nOx(J + 1)/ 1.816155626

Extarnal Coeffiolent of w:.(l, 2,b) + (1/n)%2(1,a,D) 0.5

work Cosfficient of ©3(c,d,e) + (l/n)gﬁt(o,d,e) 0.7382812%
CoefTicient of w,?\r,g,n) + u./n; wt(r,g,n) 0.92735905
Coafficient of ¢7(1 a,b) ¢ (c,d.,o) + (l/n) cpt(l a,b) ¢t(c,d,e) 0.9375
Cosfficlent of  0,(1,a,b) @ (f,g,h) + (1/n) ¢t(1 a,b) ¢.(f,g,n) 0.8203125
Qoefficient of &y(c,d,e) d' (:E‘,g,h) + (1/n) d!t(o d,e) ®4(f,g,h) 1.571044921

~TRA
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TAELE -V

QUADBATIC FORM IN a,b,c,d,e,f,g, AND h
[Bei2f o=l (m+1) = 7]

8train energy 1 Ocnstant ae ba 02 a2 o? fa
Ring ok 92MOTTTTO 11.65&019#&5 8.6870953085 | 1k.99393154 10.619996069 | 3.33643e713 | 11.566696791
{10 | 56,88888A800 | 1k, 000000000 o5, 2830%06 196 o 87.111111111, | ho3.4088103

Stringer, mmluag’.l J.h.amaeaesgg az.ﬂngmeaaa 6.3620987% k9 = 76.:525 a;.-!nm?m'rg %mﬁlgm
Btringsr, tangential|ll | 3.%393%535 0. 063209 2. 0. . .
_Ghear 0276825154 . 0250011066 vo17899648% | ~ .0377873637 | .0203300261] .Oskeséeany|  .0NOSEEMLS
Work 0 | 1h.222222000 | 3.553955556 6.320987 a +25 ' 94333333333 | 26.37803818

1| 3.63432099 | 5.559506175 1.582001!?2; 5.395833337 aeuassﬂas'r 2.3359259 6-'m630372

& ne ab | pac ad . Bas 2af

Ring ‘| 8.192532k82 | k.116650618 |-23.9%047hO73 | -60. B8 |28, 99L |-3h.98TTTh6OkE | -50.265054467
e, e (GRS RER ey | MRS \REEE 2R RIS iR

'.1 l’ 3 a - L] L] '] - L] - s
Btringer, tangentiall|l | 1.008572048] o.44B2sL068 0.169629629 | -2.6656666657 0.056666667 | 0.3959559%6 | -2.333333333
Shear .0p203%02TY 0262026766 .0061656862 |  -.0L4k310138 .oe8erorhe|  .0115625366| ..0126271366
Work 0 |+ 6.59% 11.7235T2556 -G honkBhB. | -26.66666666 6.666666667 |-1T.TTTTTTT78 |-23.3333333

1 m.auﬁo 2.9341496826 .5.g206581+35 -16.7#071+o731 10.hehoTho78 |-11.101234566 -321%331%

g gah o b be et 2bg th
R 21.,2399921.25 |26, 813414092 41340071559 | -3h.9R7TTREMLE |12, 660632; 3h. B |-28.B1s41k09e | 10.672865k2
Bi‘fm reatal J 1O 23.23 3333?3 1620222000000 | 149,222200000" | ~T1,11111111111) h'r.i?mm mm -62, 220200020 uﬂumm
' il 36. 33333 |-36.0568660880 32.555555568 Atm#hugl;g 13%6151&582; 3;1:3:.1% .32.888688889 13.31'(7’3:3{3303703

Btxd ‘tangential|l | 0.233333333 ( O0.313MVIANINY} -1 TTTITI0T +355 N -1.5%5555 +311111311111) O.
Bhen:m i nei&.:{yo: 0101172196 -.083TT™oT62 .ou?%aﬁsl .033%61.8:09| «.0733039792  .0LOLLT2196 .0293666109
Work 0| 5.833333333 |-15.595555556 355595 LTTTITITIS  [3l.851850850 | 3110111110 | -1%5.5550 10.3703T037

1 9.mog§%|.g -9.713580245 8.8395% -11,101234566 2.9665537 T.734557898 | -9.713 5 2.%954 T334

gt

GOST °"ON NL VOVE



T v
QARSI T 1IN 4,%,0,d,0,7,8, KD 1 = Oonoiwdnd

[EBrigsandy a+ ]

GOST *ON NI VWM

E‘L-Wi ES-O'IOMM

&
Nus&p

fg; i
N Konms
A e iEs
«OMETHTIT -
o s SR :
W

6€



SECTION

A
r~ CIRCUMFERENTIAL
WAVE ANGLE
27m/n
=0 j=1 j=2 L"A j-5 j=6
| x AXIAL WAVE LENGTH Li

A=A

STRINGERS NOT SHOWN

OUTSIDE OF BULGE

FIGURE |.- THEORETICAL DEFLECTED SHAPE.
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NACA TN No. 1505 I

|
I
|
} :
x=3L X=L

(a) BOTTOM STRINGER. -9 = 0.

(b) RING AT x=3, NACA

FIGURE 2.~ TYPICAL DEFLECTION PATTERNS. GALCIT
CYLINDER 67. S=12, s=4,(m+|)=T.
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FIGURE 3.- DEFORMATION OF CORNERS OF A PANEL SHOWING
NOTATION USED IN CALGCULATING SHEAR STRAIN.
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NACA TN No. 1505 43

[ 30" ——— - d=3.927"

= t =002 !
245 TALCLAD I | &

STRINGER 24S-T H

U

—+ ARy
3_43_

PIBAL CYLINDER 1I
45" : g=3.927“

’ T t =0.02"
RING 24S-T| 24S-T I .
- g ] - \\¢)
- ’lgrsmm ER 24S-T _
%

3 ATI2 -
e __1 '

PIBAL CYLINDER 54

=T

64"

RING
178-T

:ir- 0796"

L~ T STRINGER
178-T

.028"

GALCIT CYLINDER 30

64"
_"i'/"o.J 98“
R STRINGER $20
RING
366" | |17s-T I7s-T 5:
4" o28"{ N
i 1320
GALCIT CYLINDER 67
W

FIGURE 4 - MONOCOQUE CYLINDERS,




